| Information | |
|---|---|
| has gloss | eng: Tarskis circle-squaring problem is the challenge, posed by Alfred Tarski in 1925, to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. This was proven to be possible by Miklós Laczkovich in 1990; the decomposition makes heavy use of the axiom of choice and is therefore non-constructive. Laczkovichs decomposition uses about 1050 different pieces. |
| lexicalization | eng: Tarski's circle squaring problem |
| lexicalization | eng: Tarski's circle-squaring problem |
| instance of | e/Mathematical problem |
| Meaning | |
|---|---|
| Hungarian | |
| has gloss | hun: Laczkovich Miklós tétele, avagy a kör modern négyszögesítése, avagy Tarski problémája egy, a Banach–Tarski-paradoxon témakörébe tartozó nevezetes állítás. |
| lexicalization | hun: Laczkovich tétele |
| Chinese | |
| lexicalization | zho: 塔斯基分割圓問題 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint