| Information | |
|---|---|
| has gloss | eng: In abstract algebra, the split-quaternions or coquaternions are elements of a 4-dimensional associative algebra introduced by James Cockle in 1849 under the latter name. Like the quaternions introduced by Hamilton in 1843, they form a four dimensional real vector space equipped with a multiplicative operation. Unlike the quaternion algebra, the split-quaternions contain zero divisors, nilpotent elements, and nontrivial idempotents. As a mathematical structure, they form an algebra over the real numbers' The coquaternions came to be called split-quaternions due to the division into positive and negative terms in the modulus function. For other names for split-quaternions see the Synonyms section below. The coquaternions are most familiar through their isomorphism with 2 × 2 real matrices. |
| lexicalization | eng: Split quaternion |
| lexicalization | eng: split-quaternion |
| instance of | e/Hypercomplex number |
| Meaning | |
|---|---|
| French | |
| has gloss | fra: En mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton découvert en 1843, ils forment un espace vectoriel réel à quatre dimensions muni dune opération multiplicative. À la différence de lalgèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents. |
| lexicalization | fra: coquaternion |
| Ukrainian | |
| has gloss | ukr: Спліт-кватерніо́ни — гіперкомплексні числа виду \ a + bi + cj + dk (вперше описані Джеймсом Коклі у 1849 році), де |
| lexicalization | ukr: Спліт-кватерніони |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint